Research Article
BibTex RIS Cite

Ölçeklendirme yönteminin ve sismik izolatör modelleme tekniğinin sismik izolatörlü bir yapının tepkisi üzerindeki etkisi

Year 2024, Volume: 39 Issue: 3, 1525 - 1540, 20.05.2024
https://doi.org/10.17341/gazimmfd.1119686

Abstract

Bu çalışmada zaman tanım alanında doğrusal olmayan (ZTADO) hesap yöntemi kullanılarak sismik izolasyonlu yapılarda yalıtım seviyesinde meydana gelen en büyük deplasman (MID), en büyük kuvvet (MIF) ve en büyük ivme (MA) değerleri dört farklı ölçeklendirme yöntemi dikkate alınarak incelenmiştir. Yalıtım birimi kurşun çekirdekli kauçuk izolatörler ile modellenmiş olup farklı yöntemler ile ölçeklendirilen deprem kayıtlarının her iki yatay bileşeni yalıtım birimine eş zamanlı olarak etki ettirilmiş ve çift doğrultulu analizler gerçekleştirilmiştir. Yürütülen analizlerde kurşun çekirdekli kauçuk izolatörler, kurşun çekirdekte ısınma etkisi nedeniyle meydana gelen dayanım kaybının dikkate alındığı (sıcaklık etkisi dahil, TI) ve alınmadığı durumlar (sınır analizler, LB-UB) için iki farklı yaklaşımla modellenmiştir. Analizlerde yalıtım birimi dayanımını temsilen dört farklı Q/W oranı (0.75, 0.90, 0.105 ve 0.120) ile izolasyon periyodunu temsilen beş farklı Tiso (2.5s, 2.75s, 3.0s, 3.25s ve 3.5s) dikkate alınmıştır. Sonuç olarak ölçeklendirme yöntemindeki farklılaşma maksimum izolatör kuvvetleri üzerinde önemli bir değişiklik yaratmazken, maksimum izolatör deplasmanları ve maksimum ivme değerlerinde %25’e varan değişimlere sebep olabildiği görülmüştür. Bu farklılaşma, sismik izolatörün nasıl modellendiğinden ihmal edilecek seviyede etkilenmektedir.

Supporting Institution

Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK)

Project Number

2218-118C510

Thanks

Bu çalışma, Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK) 2218 programı kapsamında 118C510 numaralı proje tarafından desteklenmiştir.

References

  • Naeim, F. ve Kelly, J.M., Design of seismic isolated structures : from theory to practice. A.B.D., 1999.
  • Türkiye Bina Deprem Yönetmeliği, Başbakanlık Afet ve Acil Durum Yönetimi Başkanlığı, Ankara, Türkiye, 2018.
  • Eurocode8: Design of Structures for Earthquake Resistance- Part 1: General Rules, EN 1998-1, 2004.
  • American Society of Civil Engineers/Structural Engineering Institute (ASCE/SEI), Minimum Design Loads For Buildings And Other Structures, ASCE/SEI 7-16, Reston, V.A. 2016.
  • Whittaker A.S., Atkinson G.M., Baker J.W., Bray J.D., Grant D.N., Hamburger R., Haselton C., Selecting and scaling earthquake ground motions for performing analyses, 1–256, 2011.
  • Patil A.S., Kumbhar P.D., Time history analysis of multistoried RCC buildings for different seismic intensities, Int. J. Struct. Civ. Eng. Res., 2 (3), 195–201, 2013.
  • Bommer J.J., Acevedo A.B., The use of real earthquake accelerograms as input to dynamic analysis, J. Earthq. Eng., 8 (1), 43–91, 2004.
  • Nau J.M., Hall W.J., Scaling methods for earthquake response spectra, J. Struct. Eng., 110 (7), 1533–1548, 1984.
  • Shome N., Cornell C.A., Bazzurro P., Carballo J.E., Earthquakes, records, and nonlinear responses, Earthq. Spectra, 14 (3), 469–500, 1998.
  • Kwong N.S., Chopra A.K., Mcguire R.K., Evaluation of ground motion selection and modification procedures using synthetic ground motions, Earthq. Eng. Struct. Dyn., 44 (11), 1841–1861, 2015.
  • Eren N., Sucuoğlu H., Pinho R., Interstory drift based scaling of earthquake ground motions, Earthq. Eng. Struct. Dyn., 50 (14), 3814–3830, 2021.
  • Kalkan E., Chopra A.K., Modal-Pushover-Based ground-motion scaling procedure, J. Struct. Eng., 137 (3), 298–310, 2011.
  • Huang Y.-N., Whittaker A.S., Luco N., Hamburger R.O., Scaling earthquake ground motions for performance-based assessment of buildings, J. Struct. Eng., 137 (3), 311–321, 2011.
  • Ay B.Ö., Akkar S., A procedure on ground motion selection and scaling for nonlinear response of simple structural systems, Earthq. Eng. Struct. Dyn., 41 (12), 1693–1707, 2012.
  • Baker J.W., Measuring bias in structural response caused by ground motion scaling, Pacific Conf. Earthq. Eng., 56, 1–6, 2007.
  • Michaud D., Léger P., Ground motions selection and scaling for nonlinear dynamic analysis of structures located in Eastern North America, Can. J. Civ. Eng., 41 (3), 232–244, 2014.
  • Reyes J.C., Riaño A.C., Kalkan E., Quintero O.A., Arango C.M., Assessment of spectrum matching procedure for nonlinear analysis of symmetric- and asymmetric-plan buildings, Eng. Struct., 72, 171–181, 2014.
  • Pant D.R., Maharjan M., On selection and scaling of ground motions for analysis of seismically isolated structures, Earthq. Eng. Eng. Vib., 15 (4), 633–648, 2016.
  • Pant D.R., Influence of scaling of different types of ground motions on analysis of code-compliant four-story reinforced concrete buildings isolated with elastomeric bearings, Eng. Struct., 135, 53–67, 2017.
  • Hancock J., Bommer J.J., Stafford P.J., Numbers of scaled and matched accelerograms required for inelastic dynamic analyses, Earthq. Eng. Struct. Dyn., 37 (14), 1585–1607, 2008.
  • Michaud D., Léger P., Ground motions selection and scaling for nonlinear dynamic analysis of structures located in Eastern North America, Can. J. Civ. Eng., 41 (3), 232–244, 2014.
  • Reyes J.C., Riaño A.C., Kalkan E., Quintero O.A., Arango C.M., Assessment of spectrum matching procedure for nonlinear analysis of symmetric- and asymmetric-plan buildings, Eng. Struct., 72, 171–181, 2014.
  • Roy R., Thakur P., Chakroborty S., Scaling of ground motions and its implications to plan-asymmetric structures, Soil Dyn. Earthq. Eng., 57, 46–67, 2014.
  • Samanta A., Huang Y.N., Ground-motion scaling for seismic performance assessment of high-rise moment-resisting frame building, Soil Dyn. Earthq. Eng., 94, 125–135, 2017.
  • Reyes J.C., González C., Kalkan E., Improved ASCE/SEI 7-10 Ground-motion scaling procedure for nonlinear analysis of buildings, J. Earthq. Eng., 25 (4), 597–620, 2021.
  • Watson-Lamprey J., Abrahamson N., Selection of ground motion time series and limits on scaling, Soil Dyn. Earthq. Eng., 26 (5), 477–482, 2006.
  • Çavdar E., Özdemir G., Change in maximum isolator displacements due to change in orientation of scaled near field ground motion records, J. Fac. Eng. Archit. Gazi Univ., 33 (2), 599–609, 2018.
  • Ozdemir G., Avsar O., Bayhan B., Change in response of bridges isolated with LRBs due to lead core heating, Soil Dyn. Earthq. Eng., 31 (7), 921–929, 2011.
  • Luco N., Bazzurro P., Does amplitude scaling of ground motion records result in biased nonlinear structural drift responses?, Earthq. Eng. Struct. Dyn., 36 (13), 1813–1835, 2007.
  • Krinitzsky E., Chang F., Specifying peak motions for design earthquakes, state-of the-art for assessing earthquake hazards in the united states, 73-1, 1977.
  • Vanmarcke E., Representation of earthquake ground motion: Scaled accelerograms and equivalent response spectra, Mississippi US Army Eng. Waterw. Exp. Stn., 73-1, 1979.
  • Özdemir G., Gülkan H.P., Scaling legitimacy for design of lead rubber bearing isolated structures using a bounding analysis, Earthq. Spectra, 32 (1), 345–366, 2016.
  • Cavdar E., Ozdemir G., Bayhan B., Significance of ground motion scaling parameters on amplitude of scale factors and seismic response of short- And long-period structures, Earthq. Spectra, 35 (4), 1663–1688, 2019.
  • Fahjan Y.M., Kara F.I., Mert A., Selection and scaling time history records for performance-based design, in Performance-Based Seismic Design of Concrete Structures and Infrastructures, 1–35, 2017.
  • Pacific Earthquake Engineering Research Center (PEER), PEER Ground Motion Database, available at https://peer.berkeley.edu/peer-strong-ground-motion-database.
  • Ozdemir G., Constantinou M.C., Evaluation of equivalent lateral force procedure in estimating seismic isolator displacements, Soil Dyn. Earthq. Eng., 30 (10), 1036–1042, 2010.
  • Constantinou M. C., Whittaker A. S., Fenz D. M., Apostolakis G., Seismic Isolation of Bridges, 2007.
  • Huang Y.-N., Performance Assessment of Conventional and Base-Isolated Nuclear Power Plants For Earthquake and Blast Loadings, 2008.
  • Open System for Earthquake Engineering Simulation (OpenSees), 2021. Version: 3.3.0, Software, University of California, Pacific Earthquake Engineering Research Center, Berkeley, California, 2021. http://opensees.berkeley.edu/.
  • Ozdemir G., Dicleli M., Effect of lead core heating on the seismic performance of bridges isolated with LRB in near-fault zones, Earthq. Eng. Struct. Dyn., 41 (14), 1989–2007, 2012.
  • Avşar Ö., Özdemir G., Response of seismic-isolated bridges in relation to intensity measures of ordinary and pulselike ground motions, J. Bridg. Eng., 18 (3), 250–260, 2013.
  • Kitayama S., Constantinou M.C., Implications of strong earthquake ground motion duration on the response and testing of seismic isolation systems, Earthq. Eng. Struct. Dyn., 50 (2), 290–308, 2021.
  • Charleson A. ve Guisasola, A., Seismic Isolation for Architects, A.B.D., 2017.
  • Alhan C., Şahin F., Protecting vibration-sensitive contents: An investigation of floor accelerations in seismically isolated buildings, Bull. Earthq. Eng., 9 (4), 1203–1226, 2011.
  • Robinson W.H., Lead-rubber hysteretic bearings suitable for protecting structures during earthquakes, Earthq. Eng. Struct. Dyn., 10 (4), 593–604, 1982.
  • Kalpakidis I.V., Constantinou M.C., Effects of Heating on the Behavior of Lead-Rubber Bearing. I: Theory, Journal of Structural Engineering (J. Struct. Eng.), 135 (12), 1440-1449, 2009.
  • Kalpakidis I.V., Constantinou M.C., Effects of Heating on the Behavior of Lead-Rubber Bearing. II: Verification of Theory, Journal of Structural Engineering (J. Struct. Eng.), 135 (12), 1450-1461, 2009.
  • Erdik M., Constantinou M.C., Design and Analysis of Seismic Isolation System for Erzurum Hospital, Turkey, Ankara, 2005.
  • Ülker Mühendislik, Moda Grup Apartmanı Yapısal Güçlendirme Projesi, Rapor No: U15-20-02R3, İstanbul, 2015.
  • Park Y., Wen Y., Ang A.H.S., Random vibration of hysteretic systems under bi‐directional ground motions, Earthq. Eng. Struct. Dyn., 14 (4), 543–557, 1986.
  • Özdemir G., Response of isolated structures under bi-directional excitattions of near-field ground motions, The Graduate School of Natural and Applied Sciences of Middle East Technical University, Ankara, 2010.
  • Ozdemir G., Lead core heating in lead rubber bearings subjected to bidirectional ground motion excitations in various soil types, Earthq. Eng. Struct. Dyn., 43 (2), 267–285, 2014.
  • Erdoǧdu H., Çavdar E., Özdemir G., Comparison of design spectra in turkish earthquake codes (TEC and TBEC) in terms of seismic isolator design, Tek. Dergi/Technical J. Turkish Chamb. Civ. Eng., 32 (5), 11127–11152, 2021.
Year 2024, Volume: 39 Issue: 3, 1525 - 1540, 20.05.2024
https://doi.org/10.17341/gazimmfd.1119686

Abstract

Project Number

2218-118C510

References

  • Naeim, F. ve Kelly, J.M., Design of seismic isolated structures : from theory to practice. A.B.D., 1999.
  • Türkiye Bina Deprem Yönetmeliği, Başbakanlık Afet ve Acil Durum Yönetimi Başkanlığı, Ankara, Türkiye, 2018.
  • Eurocode8: Design of Structures for Earthquake Resistance- Part 1: General Rules, EN 1998-1, 2004.
  • American Society of Civil Engineers/Structural Engineering Institute (ASCE/SEI), Minimum Design Loads For Buildings And Other Structures, ASCE/SEI 7-16, Reston, V.A. 2016.
  • Whittaker A.S., Atkinson G.M., Baker J.W., Bray J.D., Grant D.N., Hamburger R., Haselton C., Selecting and scaling earthquake ground motions for performing analyses, 1–256, 2011.
  • Patil A.S., Kumbhar P.D., Time history analysis of multistoried RCC buildings for different seismic intensities, Int. J. Struct. Civ. Eng. Res., 2 (3), 195–201, 2013.
  • Bommer J.J., Acevedo A.B., The use of real earthquake accelerograms as input to dynamic analysis, J. Earthq. Eng., 8 (1), 43–91, 2004.
  • Nau J.M., Hall W.J., Scaling methods for earthquake response spectra, J. Struct. Eng., 110 (7), 1533–1548, 1984.
  • Shome N., Cornell C.A., Bazzurro P., Carballo J.E., Earthquakes, records, and nonlinear responses, Earthq. Spectra, 14 (3), 469–500, 1998.
  • Kwong N.S., Chopra A.K., Mcguire R.K., Evaluation of ground motion selection and modification procedures using synthetic ground motions, Earthq. Eng. Struct. Dyn., 44 (11), 1841–1861, 2015.
  • Eren N., Sucuoğlu H., Pinho R., Interstory drift based scaling of earthquake ground motions, Earthq. Eng. Struct. Dyn., 50 (14), 3814–3830, 2021.
  • Kalkan E., Chopra A.K., Modal-Pushover-Based ground-motion scaling procedure, J. Struct. Eng., 137 (3), 298–310, 2011.
  • Huang Y.-N., Whittaker A.S., Luco N., Hamburger R.O., Scaling earthquake ground motions for performance-based assessment of buildings, J. Struct. Eng., 137 (3), 311–321, 2011.
  • Ay B.Ö., Akkar S., A procedure on ground motion selection and scaling for nonlinear response of simple structural systems, Earthq. Eng. Struct. Dyn., 41 (12), 1693–1707, 2012.
  • Baker J.W., Measuring bias in structural response caused by ground motion scaling, Pacific Conf. Earthq. Eng., 56, 1–6, 2007.
  • Michaud D., Léger P., Ground motions selection and scaling for nonlinear dynamic analysis of structures located in Eastern North America, Can. J. Civ. Eng., 41 (3), 232–244, 2014.
  • Reyes J.C., Riaño A.C., Kalkan E., Quintero O.A., Arango C.M., Assessment of spectrum matching procedure for nonlinear analysis of symmetric- and asymmetric-plan buildings, Eng. Struct., 72, 171–181, 2014.
  • Pant D.R., Maharjan M., On selection and scaling of ground motions for analysis of seismically isolated structures, Earthq. Eng. Eng. Vib., 15 (4), 633–648, 2016.
  • Pant D.R., Influence of scaling of different types of ground motions on analysis of code-compliant four-story reinforced concrete buildings isolated with elastomeric bearings, Eng. Struct., 135, 53–67, 2017.
  • Hancock J., Bommer J.J., Stafford P.J., Numbers of scaled and matched accelerograms required for inelastic dynamic analyses, Earthq. Eng. Struct. Dyn., 37 (14), 1585–1607, 2008.
  • Michaud D., Léger P., Ground motions selection and scaling for nonlinear dynamic analysis of structures located in Eastern North America, Can. J. Civ. Eng., 41 (3), 232–244, 2014.
  • Reyes J.C., Riaño A.C., Kalkan E., Quintero O.A., Arango C.M., Assessment of spectrum matching procedure for nonlinear analysis of symmetric- and asymmetric-plan buildings, Eng. Struct., 72, 171–181, 2014.
  • Roy R., Thakur P., Chakroborty S., Scaling of ground motions and its implications to plan-asymmetric structures, Soil Dyn. Earthq. Eng., 57, 46–67, 2014.
  • Samanta A., Huang Y.N., Ground-motion scaling for seismic performance assessment of high-rise moment-resisting frame building, Soil Dyn. Earthq. Eng., 94, 125–135, 2017.
  • Reyes J.C., González C., Kalkan E., Improved ASCE/SEI 7-10 Ground-motion scaling procedure for nonlinear analysis of buildings, J. Earthq. Eng., 25 (4), 597–620, 2021.
  • Watson-Lamprey J., Abrahamson N., Selection of ground motion time series and limits on scaling, Soil Dyn. Earthq. Eng., 26 (5), 477–482, 2006.
  • Çavdar E., Özdemir G., Change in maximum isolator displacements due to change in orientation of scaled near field ground motion records, J. Fac. Eng. Archit. Gazi Univ., 33 (2), 599–609, 2018.
  • Ozdemir G., Avsar O., Bayhan B., Change in response of bridges isolated with LRBs due to lead core heating, Soil Dyn. Earthq. Eng., 31 (7), 921–929, 2011.
  • Luco N., Bazzurro P., Does amplitude scaling of ground motion records result in biased nonlinear structural drift responses?, Earthq. Eng. Struct. Dyn., 36 (13), 1813–1835, 2007.
  • Krinitzsky E., Chang F., Specifying peak motions for design earthquakes, state-of the-art for assessing earthquake hazards in the united states, 73-1, 1977.
  • Vanmarcke E., Representation of earthquake ground motion: Scaled accelerograms and equivalent response spectra, Mississippi US Army Eng. Waterw. Exp. Stn., 73-1, 1979.
  • Özdemir G., Gülkan H.P., Scaling legitimacy for design of lead rubber bearing isolated structures using a bounding analysis, Earthq. Spectra, 32 (1), 345–366, 2016.
  • Cavdar E., Ozdemir G., Bayhan B., Significance of ground motion scaling parameters on amplitude of scale factors and seismic response of short- And long-period structures, Earthq. Spectra, 35 (4), 1663–1688, 2019.
  • Fahjan Y.M., Kara F.I., Mert A., Selection and scaling time history records for performance-based design, in Performance-Based Seismic Design of Concrete Structures and Infrastructures, 1–35, 2017.
  • Pacific Earthquake Engineering Research Center (PEER), PEER Ground Motion Database, available at https://peer.berkeley.edu/peer-strong-ground-motion-database.
  • Ozdemir G., Constantinou M.C., Evaluation of equivalent lateral force procedure in estimating seismic isolator displacements, Soil Dyn. Earthq. Eng., 30 (10), 1036–1042, 2010.
  • Constantinou M. C., Whittaker A. S., Fenz D. M., Apostolakis G., Seismic Isolation of Bridges, 2007.
  • Huang Y.-N., Performance Assessment of Conventional and Base-Isolated Nuclear Power Plants For Earthquake and Blast Loadings, 2008.
  • Open System for Earthquake Engineering Simulation (OpenSees), 2021. Version: 3.3.0, Software, University of California, Pacific Earthquake Engineering Research Center, Berkeley, California, 2021. http://opensees.berkeley.edu/.
  • Ozdemir G., Dicleli M., Effect of lead core heating on the seismic performance of bridges isolated with LRB in near-fault zones, Earthq. Eng. Struct. Dyn., 41 (14), 1989–2007, 2012.
  • Avşar Ö., Özdemir G., Response of seismic-isolated bridges in relation to intensity measures of ordinary and pulselike ground motions, J. Bridg. Eng., 18 (3), 250–260, 2013.
  • Kitayama S., Constantinou M.C., Implications of strong earthquake ground motion duration on the response and testing of seismic isolation systems, Earthq. Eng. Struct. Dyn., 50 (2), 290–308, 2021.
  • Charleson A. ve Guisasola, A., Seismic Isolation for Architects, A.B.D., 2017.
  • Alhan C., Şahin F., Protecting vibration-sensitive contents: An investigation of floor accelerations in seismically isolated buildings, Bull. Earthq. Eng., 9 (4), 1203–1226, 2011.
  • Robinson W.H., Lead-rubber hysteretic bearings suitable for protecting structures during earthquakes, Earthq. Eng. Struct. Dyn., 10 (4), 593–604, 1982.
  • Kalpakidis I.V., Constantinou M.C., Effects of Heating on the Behavior of Lead-Rubber Bearing. I: Theory, Journal of Structural Engineering (J. Struct. Eng.), 135 (12), 1440-1449, 2009.
  • Kalpakidis I.V., Constantinou M.C., Effects of Heating on the Behavior of Lead-Rubber Bearing. II: Verification of Theory, Journal of Structural Engineering (J. Struct. Eng.), 135 (12), 1450-1461, 2009.
  • Erdik M., Constantinou M.C., Design and Analysis of Seismic Isolation System for Erzurum Hospital, Turkey, Ankara, 2005.
  • Ülker Mühendislik, Moda Grup Apartmanı Yapısal Güçlendirme Projesi, Rapor No: U15-20-02R3, İstanbul, 2015.
  • Park Y., Wen Y., Ang A.H.S., Random vibration of hysteretic systems under bi‐directional ground motions, Earthq. Eng. Struct. Dyn., 14 (4), 543–557, 1986.
  • Özdemir G., Response of isolated structures under bi-directional excitattions of near-field ground motions, The Graduate School of Natural and Applied Sciences of Middle East Technical University, Ankara, 2010.
  • Ozdemir G., Lead core heating in lead rubber bearings subjected to bidirectional ground motion excitations in various soil types, Earthq. Eng. Struct. Dyn., 43 (2), 267–285, 2014.
  • Erdoǧdu H., Çavdar E., Özdemir G., Comparison of design spectra in turkish earthquake codes (TEC and TBEC) in terms of seismic isolator design, Tek. Dergi/Technical J. Turkish Chamb. Civ. Eng., 32 (5), 11127–11152, 2021.
There are 53 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Hakan Öztürk 0000-0003-2819-273X

Gökhan Özdemir 0000-0002-2962-2327

Project Number 2218-118C510
Early Pub Date January 19, 2024
Publication Date May 20, 2024
Submission Date May 22, 2022
Acceptance Date August 24, 2023
Published in Issue Year 2024 Volume: 39 Issue: 3

Cite

APA Öztürk, H., & Özdemir, G. (2024). Ölçeklendirme yönteminin ve sismik izolatör modelleme tekniğinin sismik izolatörlü bir yapının tepkisi üzerindeki etkisi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 39(3), 1525-1540. https://doi.org/10.17341/gazimmfd.1119686
AMA Öztürk H, Özdemir G. Ölçeklendirme yönteminin ve sismik izolatör modelleme tekniğinin sismik izolatörlü bir yapının tepkisi üzerindeki etkisi. GUMMFD. May 2024;39(3):1525-1540. doi:10.17341/gazimmfd.1119686
Chicago Öztürk, Hakan, and Gökhan Özdemir. “Ölçeklendirme yönteminin Ve Sismik izolatör Modelleme tekniğinin Sismik izolatörlü Bir yapının Tepkisi üzerindeki Etkisi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39, no. 3 (May 2024): 1525-40. https://doi.org/10.17341/gazimmfd.1119686.
EndNote Öztürk H, Özdemir G (May 1, 2024) Ölçeklendirme yönteminin ve sismik izolatör modelleme tekniğinin sismik izolatörlü bir yapının tepkisi üzerindeki etkisi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39 3 1525–1540.
IEEE H. Öztürk and G. Özdemir, “Ölçeklendirme yönteminin ve sismik izolatör modelleme tekniğinin sismik izolatörlü bir yapının tepkisi üzerindeki etkisi”, GUMMFD, vol. 39, no. 3, pp. 1525–1540, 2024, doi: 10.17341/gazimmfd.1119686.
ISNAD Öztürk, Hakan - Özdemir, Gökhan. “Ölçeklendirme yönteminin Ve Sismik izolatör Modelleme tekniğinin Sismik izolatörlü Bir yapının Tepkisi üzerindeki Etkisi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39/3 (May 2024), 1525-1540. https://doi.org/10.17341/gazimmfd.1119686.
JAMA Öztürk H, Özdemir G. Ölçeklendirme yönteminin ve sismik izolatör modelleme tekniğinin sismik izolatörlü bir yapının tepkisi üzerindeki etkisi. GUMMFD. 2024;39:1525–1540.
MLA Öztürk, Hakan and Gökhan Özdemir. “Ölçeklendirme yönteminin Ve Sismik izolatör Modelleme tekniğinin Sismik izolatörlü Bir yapının Tepkisi üzerindeki Etkisi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol. 39, no. 3, 2024, pp. 1525-40, doi:10.17341/gazimmfd.1119686.
Vancouver Öztürk H, Özdemir G. Ölçeklendirme yönteminin ve sismik izolatör modelleme tekniğinin sismik izolatörlü bir yapının tepkisi üzerindeki etkisi. GUMMFD. 2024;39(3):1525-40.