Research Article
BibTex RIS Cite

A new method on pattern correction in broadside planar frequency diverse arrays

Year 2024, Volume: 39 Issue: 4, 2253 - 2262, 20.05.2024
https://doi.org/10.17341/gazimmfd.1258419

Abstract

In this study, a new approach is suggested about pattern correction due to the distortions by conformal situations in planar frequency diverse arrays (FDA). First, the differences of FDA systems from other conventional antenna array systems are evaluated and the pattern correction methods in the literature are discussed. Then, the technique of updating the inter-element frequency increment, which is a parameter of the array factor of the FDA system, is proposed in order to preserve the broadside radiation characteristic of the system and to compensate for the distortions in case the spatial coordinates change with external factors. Normally, the frequency increment between the array elements is constant and it must be much less than the central frequency of the system. Finally, the usability of the suggested technic is demonstrated with numeric examples.

References

  • 1. Borenstein J., Everett H. R., and Feng L., Navigating Mobile Robots, A K Peters Ltd., Massachusetts, A.B.D., 40-41, 1996.
  • 2. Yang P., Yan F., Yang F., and Dong T., Microstrip phased array in-band RCS reduction with a random element rotation technique, IEEE Transactions on Antennas and Propagation, 64 (6), 2513–2518, 2016.
  • 3. Dreher A., Niklasch N., Klefenz F., and Schroth A., Antenna and receiver system with digital beamforming for satellite navigation and communications, IEEE Transactions on Microwave Theory and Techniques, 51 (7), 1815–1821, 2003.
  • 4. Yu B., Yang K., Sim C.-Y.-D., and Yang G., A novel 28 GHz beam steering array for 5G mobile device with metallic casing application, IEEE Transactions on Antennas and Propagation, 66 (1), 462–466, 2018.
  • 5. Li W. T., Cui C., Ye X. T., Shi X. W., and So H. C., Quasi-time-invariant 3-D focusing beampattern synthesis for conformal frequency diverse array, IEEE Transactions on Antennas and Propagation, 68 (4), 2684–2697, 2020.
  • 6. Antonik P., Wicks M. C., Griffiths H. D., and Baker C. J., Frequency diverse array radars, Proc. of the IEEE Radar Conference, Verona, NY, USA, 215-217, 2006.
  • 7. Antonik P., Wicks M. C., Griffiths H. D., and Baker C. J., Range dependent beamforming using element level waveform diversity, Waveform Diversity and Design Conference, Las Vegas, NV, USA, 1–6, 2006.
  • 8. Antonik P., Wicks M. C., Griffiths H. D., and Baker C. J., Multi-mission multi-mode waveform diversity, Proc. of the IEEE Radar Conference, Verona, NY, USA, 3-7, May 2006.
  • 9. Shao H., Li J., Chen H., and Wang W.-Q., Adaptive frequency offset selection in frequency diverse array radar, IEEE Antennas and Wireless Propagation Letters, 13, 1045–1048, 2014.
  • 10. Wang W.-Q., Range-angle dependent transmit beampattern synthesis for linear frequency diverse arrays, IEEE Transactions on Antennas and Propagation, 61 (8), 4073–4081, 2013.
  • 11. Wang W.-Q., Frequency diverse array antenna: New opportunities, IEEE Antennas and Propagation Magazine, 57 (2), 145–152, 2015.
  • 12. Gui R., Wang W.-Q., Pan Y., and Xu J., Cognitive target tracking via angle-range-Doppler estimation with transmit subaperturing FDA radar, IEEE Journal of Selected Topics in Signal Processing, 12 (1), 76–89, 2018.
  • 13. Wang W.-Q., Retrodirective frequency diverse array focusing for wireless information and power transfer, IEEE Journal on Selected Areas in Communications, 37 (1), 61–73, 2019.
  • 14. Hu J., Yan S., Shu F., Wang J., Li J., and Zhang Y. Artificial noise aided secure transmission with directional modulation based on random frequency diverse arrays, IEEE Access, 5 (2), 1658–1667, 2017.
  • 15. Leonard J. J., Directed Sonar Sensing for Mobile Robot Navigation, Doctoral thesis, University of Oxford, Department of Engineering Science, Oxford, UK, 1990.
  • 16. Ullah I., Khattak S., and Braaten B. D., Advances in Array Optimization, IntechOpen, London, UK, 115-138, 2020. 17. Rao J.B.L., Trunk G.V., Patel D.P., Two low-cost phased arrays, IEEE Aerospace and Electronic Systems Magazine, 12 (6), 1997.
  • 18. Payami S., Ghoraishi M., and Dianati M., Hybrid Beamforming for Large Antenna Arrays with Phase Shifter Selection, IEEE Transactions on Wireless Communications, 15 (11), 2016.
  • 19. Avser B., Frazita R. F., and Rebeiz G. M., Interwoven feeding networks with aperture sinc-distribution for limited-scan phased arrays and reduced number of phase shifters, IEEE Transactaions on Antennas and Propagation, 66 (1), 2401–2413, 2018.
  • 20. Eker T., Demir S., and Hizal A., Exploitation of Linear Frequency Modulated Continuous Waveform (LFMCW) for Frequency Diverse Arrays, IEEE Transactions on Antennas and Propagation, 61 (7), 2013.
  • 21. Yoo I., Imani M. F., Mancera L. P., Sleasman T. and Smith D. R., Analytic Model of a Coax-Fed Planar Cavity-Backed Metasurface Antenna for Pattern Synthesis, IEEE Transactions on Antennas and Propagation, 67 (9), 2019.
  • 22. Gunay M. E., Kanbaz I., Aksoy E., An Effective Pattern Correction Method for Conformal Frequency Diverse Arrays, IEEE Microwave Theory and Techniques in Wireless Communications (MTTW) Conference, 134-137, Riga, Latvia, 2022.
  • 23. Altunok M., Ayrık Frekanslı Dizi Antenli Radar Sistemleri, Yüksek Lisans Tezi, Hacettepe Üniversitesi, Fen Bilimleri Enstitüsü, Ankara, 2015.
  • 24. Ahmad Z., Chen M., and Bao S. D., Beampattern analysis of frequency diverse array radar: a review, EURASIP Journal on Wireless Communications and Networking, 189, 2021.
  • 25. Chen B., Chen X., Huang Y., Guan J., Transmit beampattern synthesis for the FDA radar, IEEE Antennas Wirel. Propag. Lett. 17 (1), 98–101, 2018.
  • 26. Ataş İ., Abbasov T., ve Kurt M. B., Doğrusal ve düzlemsel mikroşerit dizi antenlerin tasarımı ve kazanç yönünden karşılaştırılması, DÜMF Mühendislik Dergisi, 9 (2), 617-624, 2018.
  • 27. Uçar M. H. B., ve Uras E., Numerical analysis, prototype implementation and in-vitro measurement of MICS/ISM band microstrip implant antennas for medical implant communication systems, Journal of the Faculty of Engineering and Architecture of Gazi University, 37 (4), 2177-2192, 2022.
  • 28. Erbaş C.D., Dual-band and dual-mode annular ring microstrip patch antenna with slots for GSM-1800 and GPS operations, Journal of the Faculty of Engineering and Architecture of Gazi University, 38 (1), 547-556, 2023.
  • 29. Secmen, M., Demir, S., Hizal A. and Eker T., Frequency Diverse Array Antenna with Periodic Time Modulated Pattern in Range and Angle, IEEE Radar Conf., 6 (1), Massachusetts, USA, 2007.
  • 30. Braaten B. D., Roy S., Ullah I., Nariyal S. and Anagnostou D.E., Phase-Compensated Conformal Antennas for Changing Spherical Surfaces, IEEE Transactions on Antennas and Propagation, 62 (4), 2014.

Enine ışıyan düzlemsel ayrık frekanslı dizi antenlerde örüntü düzeltmede yeni bir yöntem

Year 2024, Volume: 39 Issue: 4, 2253 - 2262, 20.05.2024
https://doi.org/10.17341/gazimmfd.1258419

Abstract

Bu çalışmada, düzlemsel ayrık frekanslı dizi anten sistemlerinde (Frequency Diverse Array-FDA) konformal durumlarda örüntüde meydana gelen bozulmanın düzeltilmesine yönelik yeni bir yaklaşım önerilmiştir. İlk olarak FDA sistemlerinin diğer geleneksel dizi anten sistemlerinden farklılıkları değerlendirilmiş ve literatürdeki örüntü düzeltme yöntemleri üzerinde tartışılmıştır. Ardından, harici etkenlerle uzaysal koordinatlarının değişmesi durumunda sistemin enine ışıma karakteristiğini korumak ve oluşan bozulmaları kompanze etmek için FDA sisteminin dizi faktörünün bir parametresi olan elemanlar arası frekans arttırımını güncelleme tekniği önerilmiştir. Bu parametre normalde sabittir ve merkezi frekanstan çok küçük olmalıdır. Son olarak önerilen yöntemin kullanılabilirliği nümerik örnekler aracılığıyla analiz edilmiştir.

References

  • 1. Borenstein J., Everett H. R., and Feng L., Navigating Mobile Robots, A K Peters Ltd., Massachusetts, A.B.D., 40-41, 1996.
  • 2. Yang P., Yan F., Yang F., and Dong T., Microstrip phased array in-band RCS reduction with a random element rotation technique, IEEE Transactions on Antennas and Propagation, 64 (6), 2513–2518, 2016.
  • 3. Dreher A., Niklasch N., Klefenz F., and Schroth A., Antenna and receiver system with digital beamforming for satellite navigation and communications, IEEE Transactions on Microwave Theory and Techniques, 51 (7), 1815–1821, 2003.
  • 4. Yu B., Yang K., Sim C.-Y.-D., and Yang G., A novel 28 GHz beam steering array for 5G mobile device with metallic casing application, IEEE Transactions on Antennas and Propagation, 66 (1), 462–466, 2018.
  • 5. Li W. T., Cui C., Ye X. T., Shi X. W., and So H. C., Quasi-time-invariant 3-D focusing beampattern synthesis for conformal frequency diverse array, IEEE Transactions on Antennas and Propagation, 68 (4), 2684–2697, 2020.
  • 6. Antonik P., Wicks M. C., Griffiths H. D., and Baker C. J., Frequency diverse array radars, Proc. of the IEEE Radar Conference, Verona, NY, USA, 215-217, 2006.
  • 7. Antonik P., Wicks M. C., Griffiths H. D., and Baker C. J., Range dependent beamforming using element level waveform diversity, Waveform Diversity and Design Conference, Las Vegas, NV, USA, 1–6, 2006.
  • 8. Antonik P., Wicks M. C., Griffiths H. D., and Baker C. J., Multi-mission multi-mode waveform diversity, Proc. of the IEEE Radar Conference, Verona, NY, USA, 3-7, May 2006.
  • 9. Shao H., Li J., Chen H., and Wang W.-Q., Adaptive frequency offset selection in frequency diverse array radar, IEEE Antennas and Wireless Propagation Letters, 13, 1045–1048, 2014.
  • 10. Wang W.-Q., Range-angle dependent transmit beampattern synthesis for linear frequency diverse arrays, IEEE Transactions on Antennas and Propagation, 61 (8), 4073–4081, 2013.
  • 11. Wang W.-Q., Frequency diverse array antenna: New opportunities, IEEE Antennas and Propagation Magazine, 57 (2), 145–152, 2015.
  • 12. Gui R., Wang W.-Q., Pan Y., and Xu J., Cognitive target tracking via angle-range-Doppler estimation with transmit subaperturing FDA radar, IEEE Journal of Selected Topics in Signal Processing, 12 (1), 76–89, 2018.
  • 13. Wang W.-Q., Retrodirective frequency diverse array focusing for wireless information and power transfer, IEEE Journal on Selected Areas in Communications, 37 (1), 61–73, 2019.
  • 14. Hu J., Yan S., Shu F., Wang J., Li J., and Zhang Y. Artificial noise aided secure transmission with directional modulation based on random frequency diverse arrays, IEEE Access, 5 (2), 1658–1667, 2017.
  • 15. Leonard J. J., Directed Sonar Sensing for Mobile Robot Navigation, Doctoral thesis, University of Oxford, Department of Engineering Science, Oxford, UK, 1990.
  • 16. Ullah I., Khattak S., and Braaten B. D., Advances in Array Optimization, IntechOpen, London, UK, 115-138, 2020. 17. Rao J.B.L., Trunk G.V., Patel D.P., Two low-cost phased arrays, IEEE Aerospace and Electronic Systems Magazine, 12 (6), 1997.
  • 18. Payami S., Ghoraishi M., and Dianati M., Hybrid Beamforming for Large Antenna Arrays with Phase Shifter Selection, IEEE Transactions on Wireless Communications, 15 (11), 2016.
  • 19. Avser B., Frazita R. F., and Rebeiz G. M., Interwoven feeding networks with aperture sinc-distribution for limited-scan phased arrays and reduced number of phase shifters, IEEE Transactaions on Antennas and Propagation, 66 (1), 2401–2413, 2018.
  • 20. Eker T., Demir S., and Hizal A., Exploitation of Linear Frequency Modulated Continuous Waveform (LFMCW) for Frequency Diverse Arrays, IEEE Transactions on Antennas and Propagation, 61 (7), 2013.
  • 21. Yoo I., Imani M. F., Mancera L. P., Sleasman T. and Smith D. R., Analytic Model of a Coax-Fed Planar Cavity-Backed Metasurface Antenna for Pattern Synthesis, IEEE Transactions on Antennas and Propagation, 67 (9), 2019.
  • 22. Gunay M. E., Kanbaz I., Aksoy E., An Effective Pattern Correction Method for Conformal Frequency Diverse Arrays, IEEE Microwave Theory and Techniques in Wireless Communications (MTTW) Conference, 134-137, Riga, Latvia, 2022.
  • 23. Altunok M., Ayrık Frekanslı Dizi Antenli Radar Sistemleri, Yüksek Lisans Tezi, Hacettepe Üniversitesi, Fen Bilimleri Enstitüsü, Ankara, 2015.
  • 24. Ahmad Z., Chen M., and Bao S. D., Beampattern analysis of frequency diverse array radar: a review, EURASIP Journal on Wireless Communications and Networking, 189, 2021.
  • 25. Chen B., Chen X., Huang Y., Guan J., Transmit beampattern synthesis for the FDA radar, IEEE Antennas Wirel. Propag. Lett. 17 (1), 98–101, 2018.
  • 26. Ataş İ., Abbasov T., ve Kurt M. B., Doğrusal ve düzlemsel mikroşerit dizi antenlerin tasarımı ve kazanç yönünden karşılaştırılması, DÜMF Mühendislik Dergisi, 9 (2), 617-624, 2018.
  • 27. Uçar M. H. B., ve Uras E., Numerical analysis, prototype implementation and in-vitro measurement of MICS/ISM band microstrip implant antennas for medical implant communication systems, Journal of the Faculty of Engineering and Architecture of Gazi University, 37 (4), 2177-2192, 2022.
  • 28. Erbaş C.D., Dual-band and dual-mode annular ring microstrip patch antenna with slots for GSM-1800 and GPS operations, Journal of the Faculty of Engineering and Architecture of Gazi University, 38 (1), 547-556, 2023.
  • 29. Secmen, M., Demir, S., Hizal A. and Eker T., Frequency Diverse Array Antenna with Periodic Time Modulated Pattern in Range and Angle, IEEE Radar Conf., 6 (1), Massachusetts, USA, 2007.
  • 30. Braaten B. D., Roy S., Ullah I., Nariyal S. and Anagnostou D.E., Phase-Compensated Conformal Antennas for Changing Spherical Surfaces, IEEE Transactions on Antennas and Propagation, 62 (4), 2014.
There are 29 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Muhammed Eyyub Günay 0000-0002-8395-2474

İhsan Kanbaz 0000-0002-0333-7464

Ertugrul Aksoy 0000-0002-6184-7112

Early Pub Date May 17, 2024
Publication Date May 20, 2024
Submission Date March 1, 2023
Acceptance Date November 27, 2023
Published in Issue Year 2024 Volume: 39 Issue: 4

Cite

APA Günay, M. E., Kanbaz, İ., & Aksoy, E. (2024). Enine ışıyan düzlemsel ayrık frekanslı dizi antenlerde örüntü düzeltmede yeni bir yöntem. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 39(4), 2253-2262. https://doi.org/10.17341/gazimmfd.1258419
AMA Günay ME, Kanbaz İ, Aksoy E. Enine ışıyan düzlemsel ayrık frekanslı dizi antenlerde örüntü düzeltmede yeni bir yöntem. GUMMFD. May 2024;39(4):2253-2262. doi:10.17341/gazimmfd.1258419
Chicago Günay, Muhammed Eyyub, İhsan Kanbaz, and Ertugrul Aksoy. “Enine ışıyan düzlemsel ayrık Frekanslı Dizi Antenlerde örüntü düzeltmede Yeni Bir yöntem”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39, no. 4 (May 2024): 2253-62. https://doi.org/10.17341/gazimmfd.1258419.
EndNote Günay ME, Kanbaz İ, Aksoy E (May 1, 2024) Enine ışıyan düzlemsel ayrık frekanslı dizi antenlerde örüntü düzeltmede yeni bir yöntem. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39 4 2253–2262.
IEEE M. E. Günay, İ. Kanbaz, and E. Aksoy, “Enine ışıyan düzlemsel ayrık frekanslı dizi antenlerde örüntü düzeltmede yeni bir yöntem”, GUMMFD, vol. 39, no. 4, pp. 2253–2262, 2024, doi: 10.17341/gazimmfd.1258419.
ISNAD Günay, Muhammed Eyyub et al. “Enine ışıyan düzlemsel ayrık Frekanslı Dizi Antenlerde örüntü düzeltmede Yeni Bir yöntem”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39/4 (May 2024), 2253-2262. https://doi.org/10.17341/gazimmfd.1258419.
JAMA Günay ME, Kanbaz İ, Aksoy E. Enine ışıyan düzlemsel ayrık frekanslı dizi antenlerde örüntü düzeltmede yeni bir yöntem. GUMMFD. 2024;39:2253–2262.
MLA Günay, Muhammed Eyyub et al. “Enine ışıyan düzlemsel ayrık Frekanslı Dizi Antenlerde örüntü düzeltmede Yeni Bir yöntem”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol. 39, no. 4, 2024, pp. 2253-62, doi:10.17341/gazimmfd.1258419.
Vancouver Günay ME, Kanbaz İ, Aksoy E. Enine ışıyan düzlemsel ayrık frekanslı dizi antenlerde örüntü düzeltmede yeni bir yöntem. GUMMFD. 2024;39(4):2253-62.