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Abstract   Öz  

In this study, an induction motor (IM) drive based on speed-

sensorless predictive torque control (PTC) is designed to 

perform the high-performance control of the IMs by utilizing 

the least mean square (LMS) algorithm for the adaptation 

mechanism of the model reference adaptive system (MRAS). 

Here, the MRAS with LMS adaptation is based on the stator 

currents (𝑖𝑠𝛼  and 𝑖𝑠𝛽) of the IM. Moreover, the rotor fluxes 

(𝜑𝑟𝛼 and 𝜑𝑟𝛽) are obtained by the current model, which 

requires the rotor mechanical speed (𝜔𝑚) along with 𝑖𝑠𝛼  and 

𝑖𝑠𝛽. In contrast to the other MRAS based studies using 

proportional-integral (PI) in the adaptation mechanisms to 

estimate state or parameter, it is possible to determine the 

states and/or parameters as weight coefficients in the MRAS 

with LMS adaptation which are calculated and updated in 

each iteration. Here, 𝜔𝑚 value is estimated and updated in 

each iteration as weight coefficient. Furthermore, the MRAS 

with LMS adaptation is compared to the MRAS using 

conventional PI in simulations. The simulation results 

clearly visualize both the estimation performance of stator 

current based MRAS using LMS adaptation and the 

effectiveness of the proposed PTC based IM drive. 

 Bu çalışmada, asenkron motorların (ASM’lerin) yüksek 

başarımlı kontrolünü gerçekleştirmek için uyarlama 

mekanizmasında en küçük ortalama kareler (EKOK) 

algoritmasını kullanan modele uyarlamalı sisteme (MUS’a) 

dayanan hız-algılayıcısız öngörülü moment kontrol (ÖMK) 

tabanlı ASM sürücüsü tasarlanmıştır. Burada, EKOK 

uyarlamalı MUS ASM’nin stator akımları (𝑖𝑠𝛼  ve 𝑖𝑠𝛽) 

tabanlıdır. Rotor akıları (𝜑𝑟𝛼 ve 𝜑𝑟𝛽), rotor mekanik hızı 

(𝜔𝑚) ile birlikte 𝑖𝑠𝛼  ve 𝑖𝑠𝛽  gerektiren akım model 

kullanılarak elde edilmiştir. Uyarlama mekanizmasında 

oransal-integral kullanan MUS tabanlı çalışmaların aksine, 

EKOK uyarlamalı MUS’da durum ve/veya parametreler her 

iterasyonda hesaplanan ve güncellenen ağırlık katsayıları 

olarak tanımlanabilir. Bu çalışmada 𝜔𝑚 her iterasyonda 

ağırlık katsayısı olarak kestirilir ve güncellenir. Ayrıca, 

EKOK uyarlamalı MUS geleneksel oransal-integrali 

kullanan MUS ile benzetim ortamında karşılaştırılmıştır. 

Benzetim sonuçları EKOK uyarlamasını kullanan stator 

akımları tabanlı MUS’un kestirim başarımını ve önerilen 

ÖMK tabanlı ASM sürücüsünün etkinliğini açıkça 

göstermektedir. 

Keywords: Speed-sensorless IM control, PTC, LMS 

algorithm, MRAS 

 Anahtar kelimeler: Hız-algılayıcısız ASM kontrolü, MÖK, 

EKOK algoritması, MUS 

1 Introduction 

Due to the devastating effects of climate change, CO2 

emissions have attracted the attention of people all over the 

world. Thus, instead of using fossil fuels in vehicles, the 

electrical vehicles have been becoming more and more 

popular these days, which points out the importance of 

electrical motors and their control strategies. Induction 

motor (IM) is one of the used electric motors in electrical 

vehicles and industry. Some of the reasons for the use of IMs 

can be given as low maintenance requirement, cost, 

simplicity, and ability to work in harsh environments. 

Considering the high performance control applications of the 

IMs, different methods are used in the current literature such 

as field oriented control (FOC) [1], direct torque control 

(DTC) [2, 3], and model predictive control (MPC) [4, 5]. In 

the literature, there are some studies emphasizing the 

superiorities of the FOC over the DTC or vice versa [6, 7]. 

Here, MPC is rather new comparing to the other methods in 

the IM control applications. In the literature, one of the most 

preferred MPC strategies for the control of IMs is the 

predictive torque control (PTC) [8]. In the PTC strategy, the 

electromagnetic torque and stator flux are controlled by the 

proper selection of the voltage vector, which determines the 

inverter switching states [9]. By determining the proper 

voltage vector, the reference flux and electromagnetic torque 

values are tracked by PTC [9]. By the minimization of the 

cost function, which is defined by the control objectives in 

PTC, the optimal voltage vector is selected. Here in PTC, 

new control constraints and objectives can be added to the 

cost function [4]. Although there is no need for inner current 

control loops, there is only one PI controller for the outer 

speed control loop in PTC [8]. As addressed by Rodriguez et 

al. [4], by considering the computational optimization, the 

parameter sensitivity, the weight factor adjustment, and the 

switching frequency limitation, more efficient PTC 

strategies can be developed. Thus, there are some studies for 

the enhancement of PTC strategies by reducing switching 

frequency [9], minimizing power loss [10], optimizing or 
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eliminating weight factor [11, 12], and increasing robustness 

against the parameter variations [13]. 

Along with the advantages of the IMs, their highly 

nonlinear models and parameter variations make the high 

performance control applications challenging. Here, the 

parameter variations address the frequency and temperature 

based resistance variations and flux level based inductance 

variations. Control performance of the IM drives is related to 

the correct values of the states and thus parameters. In order 

to obtain the correct values of the control objectives, model 

based methods are used in the literature such as model 

reference adaptive system (MRAS) [14], full order observers 

[15], sliding mode observer (SMO) [16], and nonlinear 

Kalman filters [17]. 

Considering these methods, MRAS based methods stand 

especially out due to simplicity and computational load when 

considering a simple microprocessor application. Looking at 

the MRAS based studies in the literature, Schauder [18] 

presents rotor mechanical speed (𝜔𝑚) estimation by using 

the voltage and current model of the IM in the reference and 

adaptive model of the flux based MRAS, respectively. Vasic 

et al. [19] use the flux based MRAS for parallel estimation 

of the stator resistance (𝑅𝑠) and 𝜔𝑚. In Gayathri et al. [20], 

the rotor resistance (𝑅𝑟) estimation is performed by using the 

rotor flux based MRAS. In Mapelli et al. [21], the reactive 

power and motor torque based two different MRAS 

algorithms are implemented and compared. Demir and Barut 

[22] present an active power based MRAS algorithm using 

the least mean square (LMS) method in the adaptation 

mechanism to estimate 𝑅𝑠 along with the other estimated 

states and parameters by an extended Kalman filter. Teja et 

al. [23] introduce an X based MRAS for 𝑅𝑠 estimation when 

𝜔𝑚 is measured. In Teja et al. [23], X represents a stator 

voltage and current based fictitious quantity. In Basak et al. 

[24], an active power and Y based MRAS algorithm is 

performed for 𝑅𝑠 estimation, and X based MRAS algorithm 

is used for the 𝜔𝑚 estimation. As X in Teja et al. [23], Y 

represents a fictitious quantity in [24]. Orlowska-Kowalska 

and Dybkowski [25] present a MRAS algorithm based on 

stator current to estimate 𝜔𝑚. In Bednarz and Dybkowski 

[14], a MRAS algorithm based on reactive and active power 

is performed to estimate 𝑅𝑠 and 𝑅𝑟. The rotor time constant 

(𝑇𝑟) is estimated by MRAS using least square method [1]. 

The main contribution of this study is to perform the 

speed-sensorless PTC based IM drive by using the stator 

currents based MRAS. Here, the LMS is utilized in the 

adaptation mechanism of the MRAS to perform 𝜔𝑚 

estimation. The estimated 𝜔𝑚 is fed back to both PTC and 

the current model of the IM used to obtain the rotor fluxes 

(𝜑𝑟𝛼 and 𝜑𝑟𝛽). 𝜑𝑟𝛼 and 𝜑𝑟𝛽 are used in both PTC to obtain 

stationary axis components of stator fluxes (𝜑𝑠𝛼 and 𝜑𝑠𝛽) 

and adaptive model to obtain stator currents (𝑖𝑠𝛼  and 𝑖𝑠𝛽) . 

Instead of using the proportional-integral (PI) controller 

adaptation in MRAS, the LMS algorithm provides the 

opportunity to determine states and/or parameters as weight 

coefficient to calculate and update in each iteration, which 

can be classified as another contribution of this study. By 

using LMS adaptation in MRAS, the PI controller need for 

the conventional MRAS is eliminated. Therefore, there is no 

need to design PI controller and determine its coefficients, 

which is a time consuming process.  Furthermore, in order to 

show the effectiveness of the MRAS with LMS adaptation, 

it is compared with the MRAS using conventional PI in the 

same scenario in simulations. The comparison results are 

presented both graphically and numerically. 

This paper is composed of six sections. The related 

literature review and contribution of this study is given in 

Section I. The dynamic model of the IMs is given in Section 

II. The details of the stator current based MRAS algorithm 

and LMS adaptation based speed estimation are presented in 

Section III. Section IV and Section V present the details of 

proposed PTC based IM drive and the simulation results, 

respectively. Finally, the conclusion is clarified in Section 

VI. 

2 Dynamic model of the IM 

The dynamic model of the IM based on rotor flux can be 

divided into two subsystems: the electrical and mechanical. 

The electrical subsystem can be described by fourth-order 

mathematical equations as follows: 

 

𝑑𝑖𝑠𝛼
𝑑𝑡

= −(
𝑅𝑠
𝐿𝜎
+
𝑅𝑟𝐿𝑚

2

𝐿𝑟
2𝐿𝜎

) 𝑖𝑠𝛼 +
𝐿𝑚𝑅𝑟
𝐿𝑟
2𝐿𝜎

𝜑𝑟𝛼 (1) 

 

𝑑𝑖𝑠𝛽

𝑑𝑡
= −(

𝑅𝑠
𝐿𝜎
+
𝑅𝑟𝐿𝑚

2

𝐿𝑟
2𝐿𝜎

) 𝑖𝑠𝛽 −
𝐿𝑚𝑝𝑝𝜔𝑚

𝐿𝜎𝐿𝑟
𝜑𝑟𝛼 (2) 

 
𝑑𝜑𝑟𝛼
𝑑𝑡

=
𝑅𝑟𝐿𝑚
𝐿𝑟

𝑖𝑠𝛼 −
𝑅𝑟
𝐿𝑟
𝜑𝑟𝛼 − 𝑝𝑝𝜔𝑚𝜑𝑟𝛽 (3) 

 
𝑑𝜑𝑟𝛽

𝑑𝑡
=
𝑅𝑟𝐿𝑚
𝐿𝑟

𝑖𝑠𝛽 + 𝑝𝑝𝜔𝑚𝜑𝑟𝛼  −
𝑅𝑟
𝐿𝑟
𝜑𝑟𝛽 (4) 

 

As for the mechanical subsystem, it is defined by a 

mathematical equation derived from the equation of motion 

as follows: 

 
𝑑𝜔𝑚
𝑑𝑡

=
3

2

𝑝𝑝

𝐽𝑇

𝐿𝑚
𝐿𝑟
(𝜑𝑟𝛼𝑖𝑠𝛽 − 𝜑𝑟𝛽𝑖𝑠𝛼) −

𝐵𝑇
𝐽𝑇
𝜔𝑚 −

𝑡𝐿
𝐽𝑇

 (5) 

 

where 𝛼𝛽 − represents stator stationary axis; 𝑣𝑠𝛼 , 𝑣𝑠𝛽, 

𝑖𝑠𝛼 , and 𝑖𝑠𝛽 are the 𝛼𝛽 − axis components for stator voltages 

and currents; 𝜑𝑟𝛼 and 𝜑𝑟𝛽 are the 𝛼𝛽 − axis components for 

rotor fluxes; 𝜔𝑚 is rotor mechanical speed; 𝑅𝑟 and 𝑅𝑠 are 

rotor and stator resistances, respectively; 𝐿𝑟 and 𝐿𝑠 are rotor 

and stator leakage inductances, respectively; 𝐿𝑚 is 

magnetizing inductance; 𝐿𝜎 =  𝜎𝐿𝑠 = 𝐿𝑠 − 𝐿𝑚
2 /𝐿𝑟  is stator 

transient inductance; 𝑝𝑝 is number of pole pairs; 𝐽𝑇 and 𝐵𝑇  

are the total inertia of system and viscous friction coefficient, 

respectively [26]. 

In this study, so as to perform the estimation of 𝑖𝑠𝛼 , 𝑖𝑠𝛽, 

𝜑𝑟𝛼, 𝜑𝑟𝛽, and 𝜔𝑚, the electrical subsystem equations given 

in Equation (1)-(4) are used in the MRAS algorithm. Here, 

(3) and (4) represent the current model of the IM. 

3 Stator current based MRAS 

The flowchart for the conventional stator current based 
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MRAS algorithm using PI controller and MRAS algorithm 

using LMS adaptation are shown in Figure 1 [25] and Figure 

2. In this MRAS estimators, while the measured 𝑖𝑠𝛼  and 𝑖𝑠𝛽 

are outputs of the reference model, the adaptive model 

outputs are obtained by Equations (6) and (7). 𝜑𝑟𝛼 and 𝜑𝑟𝛽 

required for Equations (6) and (7) are provided by Equations 

(8) and (9), which are the current model. Here, Equations (6)-

(9) are obtained by discretizing Equations (1)-(4) with 

forward Euler approximation. 

 

 

Figure 1. The stator current based MRAS using 

conventional PI [25]. 

 

 

Figure 2. The stator current based MRAS with LMS 

adaptation 

 

𝑖𝑠𝛼,𝑘+1
𝑎 = (1 − 𝑇 (

𝑅𝑠
𝐿𝜎
+
𝑅𝑟𝐿𝑚

2

𝐿𝑟
2𝐿𝜎

)) 𝑖𝑠𝛼,𝑘 +
𝑇

𝐿𝜎
𝑣𝑠𝛼,𝑘 

             +
𝐿𝑚𝑅𝑟𝑇

𝐿𝑟
2𝐿𝜎

𝜑𝑟𝛼,𝑘 +
𝐿𝑚𝑝𝑝𝜔𝑚,𝑘𝑇

𝐿𝜎𝐿𝑟
𝜑𝑟𝛽,𝑘 

(6) 

 

𝑖𝑠𝛽,𝑘+1
𝑎 = (1 − 𝑇 (

𝑅𝑠
𝐿𝜎
+
𝑅𝑟𝐿𝑚

2

𝐿𝑟
2𝐿𝜎

)) 𝑖𝑠𝛽,𝑘 +
𝑇

𝐿𝜎
𝑣𝑠𝛽,𝑘 

              −
𝐿𝑚𝑝𝑝𝜔𝑚,𝑘𝑇

𝐿𝜎𝐿𝑟
𝜑𝑟𝛼,𝑘 +

𝐿𝑚𝑅𝑟𝑇

𝐿𝑟
2𝐿𝜎

𝜑𝑟𝛽,𝑘 

(7) 

 

𝜑𝑟𝛼,𝑘+1 =
𝑅𝑟𝐿𝑚𝑇

𝐿𝑟
𝑖𝑠𝛼,𝑘 + (1 −

𝑅𝑟𝑇

𝐿𝑟
)𝜑𝑟𝛼,𝑘

− 𝑇𝑝𝑝𝜔𝑚,𝑘𝜑𝑟𝛽,𝑘 

(8) 

 

𝜑𝑟𝛽,𝑘+1 =
𝑅𝑟𝐿𝑚𝑇

𝐿𝑟
𝑖𝑠𝛽,𝑘 + 𝑇𝑝𝑝𝜔𝑚,𝑘𝜑𝑟𝛼,𝑘 

+ (1 −
𝑅𝑟𝑇

𝐿𝑟
)𝜑𝑟𝛽,𝑘 

(9) 

In order to perform speed estimation in MRAS algorithm 

using conventional PI adaptation, Equations (6)-(9) and 

measured stator currents are used in Equation (10). 

 

𝜔𝑚
PI = (𝑘𝑝 +

𝑘𝑖
𝑠
) ((𝑖𝑠𝛼

𝑟 − 𝑖𝑠𝛼
𝑎 )𝜑𝑟𝛽 −(𝑖𝑠𝛽

𝑟 − 𝑖𝑠𝛽
𝑎 )𝜑𝑟𝛼) (10) 

 

For the MRAS estimator with LMS adaptation, the 

weight vector (𝐰𝑘) and the input matrix (𝐱𝑘) of the adaptive 

model given in Equations (6) and (7) are defined as follows: 

 

𝐰𝑘 =

[
 
 
 
 
 
 
 
 1 − 𝑇 (

𝑅𝑠
𝐿𝜎
+
𝑅𝑟𝐿𝑚

2

𝐿𝑟
2𝐿𝜎

)

𝐿𝑚𝑅𝑟𝑇

𝐿𝑟
2𝐿𝜎

𝑇𝐿𝑚𝑝𝑝𝜔𝑚,𝑘

𝐿𝜎𝐿𝑟
𝑇

𝐿𝜎 ]
 
 
 
 
 
 
 
 

 (11) 

 

𝐱𝑘 = [

𝑖𝑠𝛼,𝑘 𝑖𝑠𝛽,𝑘
𝜑𝑟𝛼,𝑘 𝜑𝑟𝛽,𝑘
𝜑𝑟𝛽,𝑘 𝜑𝑟𝛼,𝑘
𝑣𝑠𝛼,𝑘  𝑣𝑠𝛼,𝑘 

] (12) 

 

where other coefficients except for 𝜔𝑚 in 𝐰𝑘 are 

constant. Using Equations (11) and (12), the adaptive model 

outputs can be rewritten as follows: 

 

[
𝑖𝑠𝛼,𝑘+1
𝑎

𝑖𝑠𝛽,𝑘+1
𝑎 ]

⏟    
𝐢𝑠,𝑘
𝑎

= 𝐱𝑘
𝑇𝐰𝑘 

(13) 

 

The difference between the reference model outputs 

(measured 𝑖𝑠𝛼  and 𝑖𝑠𝛽) and the adaptive model outputs, 

namely errors, are defined by Equation (14). 

 

𝐞𝐢𝑠,𝑘  = 𝐢𝑠,𝑘
𝑟 − 𝐢𝑠,𝑘

𝑎  (14) 

 

In the LMS algorithm, 𝐰𝑘 is updated by using the 𝐞𝐢𝑠,𝑘 

and 𝐱𝑘 according to Equation (15). 

 

𝐰𝑘+1 = 𝐰𝑘 + 𝜇𝐱𝑘𝐞𝐢𝑠,𝑘 (15) 

 

where 𝜇 is called the step size controlling stability and 

the convergence rate of the LMS algorithm. So as to 

guarantee the stability of the LMS algorithm, 𝜇 must 

theoretically be selected as in Equation (16) [22, 27]. 

 

0 < 𝜇 < 2/𝜆𝑚𝑎𝑥 (16) 

 

In Equation (16), 𝜆𝑚𝑎𝑥  represents the greatest eigenvalue 

of the correlation matrix 𝐑 = 𝐄{𝐱𝑘𝐱𝑘
𝑇} [27]. 

4  PTC based IM drive 

In this paper, to perform the speed-sensorless control of 

the IM, the PTC drive system is chosen due to its advantages. 
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Eq. (6)-(7)
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As can be seen from the IM drive block diagram in Figure 3, 

𝑖𝑠𝛼 , 𝑖𝑠𝛽, 𝜑𝑟𝛼, 𝜑𝑟𝛽 and 𝜔𝑚 are required for the PTC algorithm. 

The required 𝑖𝑠𝛼 , 𝑖𝑠𝛽, and 𝜔𝑚 values are obtained by using 

the stator current based MRAS structure, which utilizes the 

current model of the IM to perform 𝜑𝑟𝛼 and 𝜑𝑟𝛽 estimations. 

By estimating 𝜑𝑟𝛼 and 𝜑𝑟𝛽 with the help of the current 

model, the estimated 𝜑𝑠𝛼 and 𝜑𝑠𝛽 are obtained for the PTC 

algorithm as in Equation (19) [8]. 

 

 

Figure 3. MRAS based speed-sensorless IM drive based 

on PTC 

 

In the IM drive, the inverter is the two-level voltage 

source inverter (2L-VSI). The eight inverter switching 

vectors are also presented in Figure 3. Furthermore, the 2L-

VSI voltage source inverter topology and the switching 

vectors are presented in Figure 4. In Figure 4, 𝑆𝑎, 𝑆𝑏, and 𝑆𝑐 
are the switching states associated with each phase, and 𝑉𝑑𝑐 
represents the DC link voltage of the inverter. Moreover, if 

𝑆𝑥 = 1, 𝑆𝑥 represents the ON state and 𝑆�̅� represents the OFF 

state, 𝑆𝑥 ∈ {𝑆𝑎 , 𝑆𝑏 , 𝑆𝑐} [13]. Here, the inverter switching state 

(𝑆) and the inverter output voltage (�⃗�𝑠) are presented in 

Equations (17) and (18), respectively: 

 

𝑆 =
2

3
(𝑆𝑎 + �⃗�𝑆𝑏 + �⃗�

2𝑆𝑐) (17) 

 

�⃗�𝑠 = 𝑉𝑑𝑐𝑆 (18) 

 

where �⃗� ≜ 𝑒𝑗2𝜋/3 and 𝑉𝑑𝑐 represents the inverter DC link 

voltage as in Figure 3. 

 

 
Figure 4. 2L-VSI topology and the possible eight voltage 

vectors. 

 

 

In order to obtain the estimated stator flux vector (�⃗⃗̂�𝑠,𝑘) 

required for the PTC, the estimated stator current vector (𝑖̇⃗̂𝑠,𝑘) 

and the estimated rotor flux vector (�⃗⃗̂�𝑟,𝑘) are used in each 

iteration. �⃗⃗̂�𝑠,𝑘 is obtained as in Equation (19) [4, 8, 28]. 

 

�⃗⃗̂�𝑠,𝑘 =
𝐿𝑚
𝐿𝑟
�⃗⃗̂�𝑟,𝑘 + 𝐿𝜎𝑖̇⃗̂𝑠,𝑘 (19) 

 

In order to perform the PTC algorithm, the predicted 

stator voltage vector (�⃗⃗�𝑠,𝑘+1
𝑝

), the predicted stator current 

vector (𝑖̇⃗𝑠,𝑘+1
𝑝

), and the predicted electromagnetic torque 

vector (𝑡𝑒,𝑘+1
𝑝

) are required. For this purpose, �⃗⃗�𝑠,𝑘+1
𝑝

 value at 

the time 𝑘 + 1 is obtained by using the voltage model of the 

IM for each voltage vector as in Equation (20). The 

expressions for the 𝑖̇⃗𝑠,𝑘+1
𝑝

 and 𝑡𝑒,𝑘+1
𝑝

 are given in Equations 

(21) and (22) at the time 𝑘 + 1  [8, 28, 29]. 

 

�⃗⃗�𝑠,𝑘+1
𝑝(𝑗)

= �⃗⃗̂�𝑠,𝑘 + 𝑇(�⃗�𝑠,𝑘
(𝑗)
−𝑅𝑠𝑖̇⃗𝑠,𝑘), 𝑗𝜖{0,1, … ,7} (20) 

 

𝑖̇⃗𝑠,𝑘+1
𝑝(𝑗)

=
𝑇

𝑇+𝑇𝜎
(
1

𝑅𝜎
(
𝑘𝑟

𝑇𝑟
− 𝑘𝑟𝑗�̂�𝑟,𝑘) �⃗⃗̂�𝑟,𝑘 + �⃗�𝑠,𝑘

(𝑗)
) +

(1 +
𝑇

𝑇𝜎
) 𝑖̇⃗𝑠,𝑘, 𝑗𝜖{0,1, … ,7} 

(21) 

 

𝑡𝑒,𝑘+1
𝑝(𝑗)

=
3

2
𝑝𝑝ℑ𝑚 {(𝑖̇⃗𝑠,𝑘+1

𝑝(𝑗)
)(�⃗⃗�𝑠,𝑘+1

𝑝(𝑗)
)
∗
} , 𝑗𝜖{0,1, … ,7} (22) 

 

where 𝑇𝜎 = 𝐿𝜎/𝑅𝜎 , 𝑇𝑟 = 𝐿𝑟/𝑅𝑟, 𝑅𝜎 = 𝑅𝑠 + 𝑘𝑟
2𝑅𝑟 , �̂�𝑟 =

𝑝𝑝�̂�𝑚, and 𝑘𝑟 = 𝐿𝑚/𝐿𝑟. 

 

The presented predicted values (�⃗⃗�𝑠,𝑘+1
𝑝(𝑗)

 and 𝑡𝑒,𝑘+1
𝑝(𝑗)

) are 

used in a predefined cost function. In order to obtain the 

optimal switching vectors, predicted values calculated for all 

switching vector are applied to cost function. Therefore, the 

voltage vector minimizing the cost function given in 

Equation (23) is chosen as optimal switching vector. 

 

𝑔 = ∑ {|𝑡𝑒
∗ − 𝑡𝑒,𝑘+ℎ

𝑝(𝑗)
| + 𝛾 ||�⃗⃗�𝑠

∗| − |�⃗⃗�𝑠,𝑘+ℎ
𝑝(𝑗)

||𝑁
ℎ=1   

    +𝐼𝑚,𝑘+ℎ} 
(23) 

 

Here in Equation (23), 𝛾 is the weighting factor 

determining the relative effect of the stator flux on the cost 

function, 𝑁 is the prediction horizon (𝑁 = 1 in this paper), 

𝐼𝑚 refers to the overcurrent protection, which is given in 

Equation (24) [4, 8, 28]. 

 

𝐼𝑚,𝑘+ℎ = {
0, 𝑖𝑓  |𝑖̇⃗𝑠,𝑘+1

𝑝
| ≤ 𝑖𝑠,𝑚𝑎𝑥

∞, 𝑖𝑓 |𝑖̇⃗𝑠,𝑘+1
𝑝

| > 𝑖𝑠,𝑚𝑎𝑥
 (24) 

 

5 Simulations 

In order to test the robustness and performance of the 

proposed speed–sensorless drive in simulations, the block 

diagram given in Figure 3 is designed and implemented in 

Matlab/Simulink. As stated before, a PI controller whose 

𝑆𝑎  
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coefficient is chosen by using trial-and-error method is used 

in the outer speed control loop of the IM drive. A three phase 

squirrel-cage IM, whose rated parameters and values are 

presented in Table 1, is used in Figure 3. In simulations; 

sampling time (𝑇) is determined as 25𝜇𝑠; weighting factor 

(𝛾) in cost function is determined as 50; step size (𝜇) of the 

LMS algorithm is chosen as 0.5. 

 

Table 1. Rated values and parameters for IM used in 

simulations. 

𝑃 [𝑘𝑊] 𝑉 [𝑉] 𝐼 [𝐴] 𝑓 [𝐻𝑧] 

3 380 6.9 50 

𝑛𝑚𝑛 [r/min ] 𝑡𝐿 [𝑁.𝑚] 𝑝𝑝 𝑅𝑠 [Ω] 

1430 20 2 2.283 

𝑅𝑟 [Ω] 𝐿𝑠 [𝐻] 𝐿𝑟 [𝐻] 𝐿𝑚 [𝐻] 

2.133 0.2311 0.2311 0.22 

 

In simulation studies, a scenario including rated speed for 

both directions of operation, low speed operation, and zero 

speed operation of the IM is designed. Moreover, 𝑡𝐿 applied 

to the IM is changed both in linear and step-like manner to 

examine the robustness of the proposed IM drive against 

different types of 𝑡𝐿 changes. The applied stator flux 

amplitude reference (|𝜑𝑠|
𝑟𝑒𝑓), the rotor mechanical speed 

reference (𝑛𝑚
𝑟𝑒𝑓

) for the IM drive, and the applied 𝑡𝐿 for IM 

are presented in Figure 5 for the challenging scenario. 

 

 
Figure 5. The applied |𝜑𝑠|

𝑟𝑒𝑓 and 𝑛𝑚
𝑟𝑒𝑓

 values for the IM 

drive together with the applied 𝑡𝐿 to the IM. 

 

The estimation results obtained by stator current based 

MRAS with LMS adaptation and the control performance for 

the proposed speed-sensorless PTC based IM drive is 

presented in Figure 6. The associating estimation errors of 

the MRAS with LMS adaptation are given in Figure 7. Here 

in Figures 6 and 7, the measured values are represented by “ 

.𝑚 ”, the estimated values are represented by “  . ̂ ”, and 

associating estimation errors determined by the difference 

between the estimated and measured values are represented 

by “𝑒(∗)”. 

 

 

Figure 6. Corresponding estimations results for MRAS 

with LMS adaptation and the tracking results for the 

proposed IM drive. 

 

 
Figure 7. Estimation errors for the MRAS with LMS 

adaptation. 

 

In order to show the performance of the proposed IM 

drive, the MRAS with LMS adaptation is compared to the 

MRAS using traditional PI adaptation for the scenario given 

in Figure 5. The estimation results and errors associating 

with MRAS using PI adaptation are presented in Figures 8 

and 9, respectively.  
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Figure 8. Corresponding estimations results for MRAS 

using conventional PI adaptation and the tracking results 

for the IM drive. 

 

 
Figure 9. Estimation errors for the MRAS using 

conventional PI adaptation. 

 

In the performance tests given in Figures 5-9, the high 

performance control of the IM is executed for a wide speed 

range with 𝑡𝐿 changes. Considering the simulation results in 

Figures 6-9 for the proposed IM drive, the following detailed 

remarks can be deduced. 

 Considering the comparison results given in Figures 6-

9 for MRAS with LMS adaptation and MRAS using 

conventional PI, it can be seen that the MRAS estimator 

using LMS adaptation presents better estimation 

performance compared to the MRAS using 

conventional PI. This can be verified by considering the 

estimation errors presented in Figures 7 and 9.  

 Although the proposed PTC based IM drive is tested 

under a wide speed range operation scenario, highly 

promising control and estimation performances are 

achieved for the proposed PTC based IM drive and 

MRAS with LMS adaptation. 

 The zero speed and zero load torque condition called 

DC condition is tested in the scenario. It is clear from 

the Figures 6 and 7 that the proposed PTC based IM 

drive easily handles this challenging condition. 

 As can be seen from Figure 5, there are linear and step-

like 𝑡𝐿 changes in the performance test. Due to the high 

estimation and control performance of the proposed 

PTC based IM drive system, it can be expressed that the 

proposed drive is robust against 𝑡𝐿 variations as in 

Figures 6 and 7. 

 

In order to demonstrate the comparison results of MRAS 

estimators numerically, the mean square errors (MSEs) 

related to the MRAS estimations are presented in Tables 2 

and 3 for MRAS with LMS and MRAS using conventional 

PI, respectively. 

 

Table 2. MSEs related to the estimations for MRAS with 

LMS adaptation (for Figure 7). 

𝑒𝑖𝑠𝛼  [𝐴] 𝑒𝑖𝑠𝛽  [𝐴] 𝑒𝜑𝑟𝛼  [𝑉. 𝑠] 𝑒𝜑𝑟𝛽 [𝑉. 𝑠] 

8.640x10−11 5.463x10−11 1.535x10−13 1.013x10−13 

𝑒𝑛𝑚  [𝑟/𝑚𝑖𝑛] 

9.980x10−4 

 

Table 3. MSEs related to the estimations for MRAS with 

conventional PI adaptation (for Figure 9). 

𝑒𝑖𝑠𝛼  [𝐴] 𝑒𝑖𝑠𝛽  [𝐴] 𝑒𝜑𝑟𝛼  [𝑉. 𝑠] 𝑒𝜑𝑟𝛽 [𝑉. 𝑠] 

2.760x10−3 2.688x10−3 2.787x10−5 2.341x10−5 

𝑒𝑛𝑚  [𝑟/𝑚𝑖𝑛] 

1.084 

 

The presented MSE values in Tables 2 and 3 for MRAS 

estimators verify that the MRAS with LMS adaptation has 

better estimation performance than the MRAS using 

conventional PI. In this study, the step size for the MRAS 

with LMS adaptation and PI coefficients for conventional 

MRAS are determined by the trial-and-error method, and 

these values are crucial for the performance of the MRAS 

estimators. Therefore, it can be noted that a fair comparison 

results can be obtained by determining the optimal step size 

value and PI coefficient values by using metaheuristic 

optimization techniques. 

6 Conclusion  

In this paper, IM drive based on PTC is designed and 

tested for the speed-sensorless high performance control 

applications of the IMs. So as to perform the speed-

sensorless PTC of IM, the stator current based MRAS with 

LMS adaptation is used. In the MRAS structure, 𝜑𝑟𝛼 and 𝜑𝑟𝛽 

is obtained by using the current model of the IM, which 

requires the rotor mechanical speed (𝜔𝑚) along with the 𝑖𝑠𝛼  

and 𝑖𝑠𝛽. Instead of using PI controller based adaptation 

mechanism in the stator current based MRAS, LMS based 

adaptation mechanism is used to perform the estimations in 

this paper. By using the LMS algorithm in adaptation 

mechanism, it is possible to determine 𝜔𝑚 as a weight 

coefficient in the LMS based MRAS algorithm which is 
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calculated and updated in each iteration. In order to test the 

proposed IM drive in simulations, a scenario including wide 

speed range operation of the IM with linear and step-like 𝑡𝐿 

variations is performed. The simulation results show 

robustness and effectiveness of the proposed IM drive. 

Moreover, the MRAS with LMS adaptation is compared 

with the MRAS using conventional PI. The presented results 

and MSE values show the superiority of the MRAS with 

LMS adaptation compared to the MRAS using conventional 

PI. 
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