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Abstract 

This paper presents the implementation of non-classical continuum theory for simply supported nanobeam. 

Hamilton’s principle and modified couple stress methods are employed for obtaining differential equation of 

motion of nanobeam in cooperation with suitable boundary conditions. An approximate solution of the presented 

system is developed considering the method of multiple scales which is one of the perturbation techniques. The 

effect of material length scale parameter ζ and the Poisson’s ratio υ on the natural frequencies are determined and 

represented in table form and graphically. Besides, dimensionless natural of frequency of nanobeam are 

investigated by taking into account various system parameters. The results of the system show that the size 

influence is very crucial for extremely thin beams with a height of nanoscale dimension. Besides, the outcome of 

the system shows that the beam modeled considering non-classical continuum theory is stiffer than those of 

classical one.  
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1. Introduction 

The ultrahigh frequency mixers and ultrahigh precision 

sensors can be exactly manufactured in current nanotech-

nology. The mechanical properties of micro/nano-electro-

mechanical system (MEMS/NEMS) based devices like res-

onators, actuators, sensors and mixers are necessary to be 

well characterized in the purpose of understanding the prin-

ciple of these nanostructures. Micro/nano-beam subject 

that was the most common components in MEMS/NEMS 

has been attracted the attention of researchers in recent 

years [1-3]. 

 

In recent years, studies related to nanostructure, which are 

extensively used as the principle part of numerous MEMS 

and NEMS, have received great attention among scientists. 

Classical MEMS and NEMS make up of metal extreme thin 

beams, conventional silicon-based materials, polymers, or 

functionally graded materials. The mechanical and dy-

namic behavior of nanostructures has attracted particular 

attention from researchers. The approach to developing 

non-classical continuum theories for modeling static and 

dynamic movement of micro and nanostructures is im-

portant because it is difficult and time consuming to con-

duct experiments at the nanoscale. With non-classical con-

tinuum theories to analyze nanostructures, it is possible to 

introduce material length parameters in the principle rela-

tions to define the size influence.  

 

Various size dependent continuum theories is more 

appealing research topic for engineers and scientist, and 

with the introduction of size effect in the constitutive 

relations, linear and nonlinear mechanical characteristics of 

nanostructures have been captured. Those of which 

includes the nonlocal elasticity theory [4], the modified 

couple stress theory [5], the surface elasticity [6], the strain 

gradient theory [7] and the micropolar theory [8].  Park and 

Gao [9] initially developed the formulation of Euler-

Bernoulli beam theory using modified couple stress theory 

(MCST) due to analyze the static deformation of a micro 

cantilever beam subjected to a point load. 

 

Recently, scientists have been attempting to use the couple 

stress effect due to capturing size effects of nanostructures. 

In the literature, several beam models taking into account 
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of the Timoshenko, Euler-Bernoulli and Reddy beam theo-

ries have been proposed in order to research the influence 

of the size effect on nanobeam models for analyzing the 

mechanical properties. Kong et al. [10] studied the dynamic 

model for Euler-Bernoulli beams considering MCST. They 

assessed the fundamental frequencies of the beams with 

size-dependeny. They found that the fundamental frequen-

cies determined by the newly established model decreases 

with increase of the typical sizes ratio to interor material 

length scale parameter. Şimşek [11] presented dynamic re-

sponse of an embedded Euler-Bernoulli type microbeam 

considering the effect of moving microparticle on the base 

of MCST. A study presented by Şimşek [11] found that dy-

namic analysis are generally beneficial for the accurate de-

sign of systems like as sensors, actuators, atomic force mi-

croscopes and microtubes conveying microparticles and of 

microscale devices. Asghari et al. [12-15] studied the size 

effects in Timoshenko beam model account of the MCST. 

Their results indicated that modeling by in that theory has 

more robust than modeling by the classical beam theory. Fu 

and Zhang [16] presented a study deal with the effect of 

size parameter in Timoshenko beam model using MCST for 

the purpose of investigating the mechanical behaviors of 

microtubes. Their result shows that the more increase the 

amount of material length scale parameter, the more the 

buckling wave quantity minimizes correspondingly as soon 

as it disappears and also the more decrease the regarding 

buckling amplitude. The free vibration and static bending 

subject of a simply supported beam were studied by non-

classical beam model [17]. Their result reveals that the fun-

damental frequency obtained by the proposed model is 

greater than those by the classical model. And also, the dis-

tinction between them becomes considerably major just for 

extreme thin beams. Chen et al. [18] used MCST to the 

newly developed model of laminated Reddy beam. Their 

numerical result reveals that the proposed beam model 

finds out the microstructure scale-effect. They can also ob-

serve that the stresses and deflections carried out by the 

proposed model are smaller than those based on Timo-

shenko and Euler-Bernoulli beam assumptions.  These 

studies were pursued in [19-23] who studied the effect of 

size parameter on the beam model considering MCST. 

Kocatürk and Akbaş [24] presented responses of the free 

end of a cantilever micro beam under the effect of an impact 

force considering the MCST. Their numerical results reveal 

that the classical beam theory based on the MCST must be 

used instead of the classical theory for small values of beam 

height. Akbaş [25] investigated the forced vibration of vis-

coelastic nanobeams embedded in an elastic medium and 

showed that with increase in the aspect ratio and the nondi-

mensional parameter of material length scale, the differ-

ence between the dynamic responses of classical beam the-

ory and MCST decrease considerably. Another study of Ak-

baş [26] dealed with the static bending of edge fractured 

micro beams under uniformly distributed transverse load-

ing based on MCST. Civalek [27] studied to analyze the 

free vibration of cylindrical and conical shells and annular 

plates made of composite laminated and functionally 

graded materials (FGMs). Shen and Li [28] used semi-con-

tinuum model to investigate the bending charactersitics of 

very thin micro/nano-beams. They showed that their ob-

tained results might be helpful in designing and understand-

ing the very thin micro/nano-beams by considering 

MEMS/NEMS. Semmani et. al [29] presented a study re-

lated to free bending vibration behavior of geometrically 

defective functionally graded (FG) microbeams. They used 

MCST due to capturing size effect.  

 

The literature related to nonlinear models is rather limited 

compared to the linear ones. The influence of various sys-

tem parameters on the nonlinear resonant dynamics of a mi-

croscale beam were studied by some researchers to investi-

gate the nonlinear forced dynamics of the system via MCST 

[30] and strain gradient theory [31]. Wang et al [32] pre-

sented a study associated with the nonlinear free vibration 

of the microbeams by using MCST. They concluded that 

the nonlinear vibration of a microbeam has a hardening 

spring behavior, and beam models related to MCST are 

stiffer than those based on the classical beam theory. Xia et 

al. [33] used the MCST for the purpose of nonlinear analy-

sis of microbeams and investigated the postbuckling, static 

bending and free vibration by taking into account the mate-

rial length scale parameter. Şimşek [34] carried out the 

static and nonlinear vibration analysis of microbeams em-

bedded in nonlinear elastic foundation by using non-classi-

cal beam theory. His numerical results show that the non-

linear frequency ratio would decrease as the dimensionless 

scale parameter magnifies, and the nonlinear foundation 

parameter has the reverse effect on the nonlinear frequency 

according to Winkler and the Pasternak types. 

 

There are number of papers in the literature about 

nanobeams and microbeams.  Many of these are focuses on 

nonlocal effects on the linear and nonlinear problems to 

analyze the dynamic characteristics. In this study, linear 

free vibration of a simply-supported nanobeam is analyzed 

numerically by using MCST. The closed form solution is 

dependent on the multiple scale method and the 

approximate solution by using the Hamilton’s equations is 

determined. A comprehensive parametric study is 

performed to analyze the effects of the material length scale 

parameter and the Poisson’s ratio. Frequencies related to 

natural based on classical beam theory and modified couple 

stress theory are obtained and checked against previous 

studies in order to show a relation with each other. 

 

2. The modified couple stress theory 

The classical couple stress theory was firstly presented for 
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isotropic elastic materials in 1960s by Toupin [35], Mindlin 

and Tiersten [36], Mindlin [37]. This theory is composed of 

two higher order material length scale parameters and 

Lame constants to include the size effects. It is noted that 

this theory has the smallest material length scale parameters 

than strain gradient and nonlocal theory. The idea that the 

MCST was initially pioneered by Yang et al. [5] to improve 

the accuracy of the studies performing in the area of 

nanostructure. This theory mentions that the density of 

strain energy is a function of not only strain tensor but also 

curvature tensor. Thus, the strain energy of a deformed 

isotropic linear elastic body occupying a volume  is given 

as    

 

𝑈 =
1

2
∫ (

ijijijij
m   )

𝛺
𝑑𝑉 𝑖, 𝑗 = 1,2,3      (2.1) 

in where σij is the stress tensor, εij is the strain tensor, mij is 

the deviatoric part of the couple stress tensor and χij is the 

symmetric curvature tensor defined by 

       

𝜎𝑖𝑗 =  ε𝑘𝑘𝛿𝑖𝑗 + 2𝜇𝜀𝑖𝑗                     (2.2) 

 

 ijujiuij ,,
2

1
                           (2.3) 

 

ijij lm  22
                             (2.4)

 

 








 
ijjiij ,,2

1


                          (2.5)

 

where ui is the displacement vector, ij is the Kronecker 

delta, l is the material length scale parameter. θi is the rota-

tion vector that can be defined as 

 

jkijki ue ,
2

1
                           

 (2.6) 

where eijk is the permutation symbol.  and  are the Láme’s 

constants defined as  

 

    













12

E
,

211

E

              (2.7) 

where  is Poisson’s ratio,  is shear modulus and E is mod-

ulus of elasticity.  

 

3. The equation of motion 

In the present study, Hamilton’s principle and modified 

coupled stress theory are implemented in an existing Euler-

Bernoulli beam with size dependent and simply supported 

beam is taken as a boundary condition shown in Figure 1. 

For the system shown in Figure 1, L is the beam length.  

 

 
Figure 1. Simply supported beam 

 

On the bases of the Euler-Bernoulli beam theory, the dis-

placement field is given as 
 

𝑢 = −𝑧𝜓(𝑥, 𝑡),      𝑣 = 0,      𝑤 = 𝑤(𝑥, 𝑡)          (3.1) 
 

where, 𝑢, 𝑣 𝑎𝑛𝑑 𝑤 are the displacement components along 

x, y, z axes, respectively. 𝜓 is the rotation angle of sections 

related with deflections given as 

x

txw
tx






),(
),(                           (3.2) 

The Poisson’s effect can be disregarded and the principal 

parts of the stress and the couple stress tensors can be given 

by using Equation (2.2)-(2.6)  

 

𝜀𝑥𝑥 = −𝑧
𝜕2𝑤(𝑥,𝑡)

𝜕𝑥2                          (3.3) 

 𝜃𝑦 = −
𝜕𝑤(𝑥,𝑡)

𝜕𝑥
                                  (3.4) 

𝜒𝑥𝑦 = −
1

2

𝜕2𝑤(𝑥,𝑡)

𝜕𝑥2                             (3.5) 

𝜎𝑥𝑥 = −𝐸𝑧
𝜕2𝑤(𝑥,𝑡)

𝜕𝑥2                       (3.6) 

𝑚𝑥𝑦 = −𝜇𝑙2 𝜕2𝑤(𝑥,𝑡)

𝜕𝑥2                       (3.7) 

Potential (U) and kinetic (T) energy expressions of the sys-

tem are written to obtain the equations of motion of size 

dependent nanobeam shown in Figure 1. The potential en-

ergy U can be written by using Equations (2.1), (2.2), (2.4), 

(3.3) and (3.5) 

 

𝑈 =
1

2
∫ (

𝐸(1−𝜐)𝐼

(1+𝜐)(1−2𝜐)
+ 𝜇𝐴𝑙2) (

𝜕2𝑤

𝜕𝑥2 )
2

𝑑𝑥
𝐿

0
+

1

2
∫ 𝑁 [

𝜕𝑢

𝜕𝑥
+

1

2
(

𝜕𝑤

𝜕𝑥
)

2
] 𝑑𝑥

𝐿

0
                 (3.8) 

where,  I  is the moment of inertia and A is the area of cross-

section. The kinetic energy (T) formula can be obtained as 

 

𝑇 =
1

2
𝜌𝐴 ∫ [(

𝜕𝑢

𝜕𝑡
)

2
+ (

𝜕𝑤

𝜕𝑡
)

2
] 𝑑𝑥

𝐿

0
          (3.9) 

where,  A is the mass per unit length. The Hamilton’s prin-

ciple can be written according to form below: 

𝛿 ∫ [𝑇 − (𝑈 − 𝑊𝑒𝑥𝑡)]𝑑𝑡 = 0
𝑡

0
         (3.10) 

where 𝛿𝑊𝑒𝑥𝑡 = 0; inserting  Equations (3.8) and (3.9) into 
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Equation (3.10) and integrating by parts, and collecting the 

coefficients of 𝛿𝑤, the following motion equations for the 

Euler-Bernoulli beam with size dependent considering the 

MCST and including the Poison influence are obtained 

 

(
𝐸(1−𝜐)𝐼

(1+𝜐)(1−2𝜐)
+ 𝜇𝐴𝑙2)

𝜕4𝑤

𝜕𝑥4 + 𝜌𝐴
𝜕2𝑤

𝜕𝑡2 =

𝐸𝐴

2𝐿
∫ [(

𝜕𝑤

𝜕𝑥
)

2
𝑑𝑥]

𝜕2𝑤

𝜕𝑥2

𝐿

0
        (3.11) 

Note that here when the length scale parameter l and the 

Poisson’s ratio v are receive to be zero in Equation (3.11), 

the classical Euler-Bernoulli beam equation can be 

acquired. Effect of Poisson’s will have to be inserting into 

equations because of accurate and reliable results [31]. The 

following dimensionless quantities are expressed because 

of the independent of geometrical properties and beam 

material as follows: 
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The Equations(3.11) and (3.12) is integrated to obtain gen-

eral dimensionless form of equation of motion as follows: 
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(3.13)

 

The non-dimensional form of simply supported boundary 

condition at the beam end (at x=0 and x=1) can be written 

as 

 

0)1(,0)0(

0)1(,0)0(





ww

ww
                       

(3.14) 

 

4. Approximate Solutions 

Method of multiple scales, the perturbation techniques, is 

used to acquire the approximate solutions of the equation 

of motion [38, 39]. Slow time scale T0=t and fast time scale, 

T1=t can be written to present the orders. In slow and fast 

time scales derivatives are taken with respect to time as 

10 DD
t






 

and 

10

2

02

2
2 DDD

t



 where nn TD       [37].  

The solution of the nanobeam model is assumed as: 

 

)T(x,Twε)T(x,Twε(x,tw 101100 ,,): 
       (3.15) 

Obtained equations are separated into the orders 1 and . 

Order 1 being linear part of the system and orders  being 

nonlinear part of the system are written by following 

formula: 

Order (1):  

  0
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1 0
2
00  wDw iv


                

(3.16) 

Order ():  
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









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   (3.17) 

 

4.1. Linear problem 

The order 1 given in Equation (3.16) constitutes the linear 

problem of the system. The complex form is written for the 

solution of the problem given as: 

 

         xYeTAxYeTATTxw
iωiω 00 T

1
T

1100 ,,



   (4.1) 

in which A is the complex amplitude. Inserting Equation 

(4.1) into Equation (3.16) results in the following formula: 

 

  0)()(1
2

 xYxY iv






                    (4.2) 

Solution of Y(x) can be in the following form: 

 
xixixixi

ececececxY 4321

4321)(



     (4.3) 

The applied the boundary conditions, the obtained the 

frequency equations. 

 

5. Numerical results 

In this section, vibration characteristic of the simply 

supported nanobeam is analyzed by using MCST. The 

material length scale parameter ( l ) is included into the 

equations to capture the size-effect.  In view of Equation 

(19),  which expresses as a function of h/l. It figures out 

that nanobeam sensitivity is a function of the ratio of the 

beam height to the internal material length scale parameter 

h/l that reports the size dependent behavior of the 

nanobeam [14, 40]. In Table 1, the fundamental frequency 

of a nanobeam as a function of dimensionless material 

length scale parameter  (i.e., the ratio of beam height to 

the material length scale parameter, h/l) and as a function 

of Poisson effect and without the Poison effect are 

considered. It is obvious from Table 1 that frequency of the 
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beam is dependent on the  value and besides the linear 

frequency of the non-classical beam theory approaches to 

classical beam theory until the dimensionless parameter  

increases further. The fundamental frequency acquired by 

considering MCST is always greater than those by classical 

beam theory because of the rising bending rigidity 

investigated by the non-classical Euler-Bernoulli beam 

model. In addition, the results of the system indicate that 

the beam modeled taking into account of MCST is stiffer 

than those of classical one. It is noted that, Poisson’s ratio 

inflence decreases with the value of  increasing. It is 

notable that natural frequencies acquired by the MCST 

based on different quantities of  and v is greater than those 

acquired by the classical beam theory. For a given, the 

fundamental frequency related with the Poisson’s ratio 

influence is greater than those without Poisson’s ratio 

effect.  

 

Figure 2 presents the relation between the dimensionless 

natural frequency and the material length scale parameter 

for different values of the Poison’s ratio. Four different 

Poisson’s ratio (i.e., υ=0, 0.23, 0.38 and 0.45) are consid-

ered. Figure2 distinctly presents that the natural frequencies 

are nonlinearly dependent on the material length scale pa-

rameter (ζ) and the natural frequencies decrease with the 

increase in the value of ζ. However, the difference between 

the results becomes more unclear for high ratio of height to 

length scale h/l. Furthermore, the effect of h/l is decreased 

or even diminished with the increase in the ratio. This is 

due to the value of material length scale parameter is in-

creased, beam becomes stiffer. Influence of size on the 

value of fundamental frequency is obviously seen only 

when the height of the beam is extremely little (with h/l<4). 

This implies one more that influence of size has a signifi-

cant influence on extremely thin beams means that height 

is at the nanoscale.   

 
Figure 2. Effect of Poisson on the natural frequency of the 

simply supported nanobeam 

 

 

Table 1. Non-dimensional natural frequencies of a beam with simply supported. 

υ  

Non-dimensional natural frequencies 

Without Poisson effect With Poisson effect 

ω1 ω2 ω3 ω1 ω2 ω3 

 1.0 26.1125 104.45 235.013 26.1125 104.45 235.013 

 2.0 15.6052 62.4209 140.447 15.6052 62.4209 140.447 

 3.0 12.7416 50.9664 114.674 12.7416 50.9664 114.674 

0.0 4.0 11.5731 46.2925 104.158 11.5731 46.2925 104.158 

 5.0 10.9903 43.9613 98.9129 10.9903 43.9613 98.9129 

 10.0 10.1614 40.6455 91.4524 10.1614 40.6455 91.4524 

 Classical beam 9.8696 39.4784 88.8264 9.8696 39.4784 88.8264 

 1.0 23.9285 95.7142 215.357 24.2506 97.0024 218.255 

 2.0 14.7038 58.8151 132.334 15.2223 60.889 137.000 

 3.0 12.2558 49.0233 110.302 12.8733 51.4932 115.86 

0.23 4.0 11.2742 45.0967 101.468 11.9425 47.77 107.482 

 5.0 10.7896 43.1585 97.1065 11.4862 45.9447 103.375 

 10.0 10.1075 40.4298 90.9671 10.8479 43.3916 97.6311 

 Classical beam 9.8696 39.4784 88.8264 10.6266 42.5065 95.6397 

 1.0 22.8238 91.2953 205.414 24.6143 98.4574 221.529 

 2.0 14.2579 57.0317 128.321 16.9773 67.909 152.795 

 3.0 12.0194 48.0777 108.175 15.1461 60.5845 136.315 

0.38 4.0 11.1301 44.5204 100.171 14.4505 57.8021 130.055 

 5.0 10.6934 42.7738 96.241 14.1170 56.4679 127.053 

 10.0 10.0819 40.3275 90.7369 13.6595 54.6382 122.936 

 Classical beam 9.8696 39.4784 88.8264 13.5036 54.0145 121.533 

1 2 3 4 5 6 7 8 9 10
10

12

14

16

18

20

22

24

26




 

 

=0

=0.23

=0.38

=0.45
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 1.0 22.3714 89.4857 201.343 27.7949 111.179 250.154 

 2.0 14.0775 56.3102 126.698 21.6853 86.7411 195.167 

 3.0 11.9245 47.6982 107.321 20.3536 81.4144 183.182 

0.45 4.0 11.0725 44.2902 99.6528 19.8664 79.4657 178.798 

 5.0 10.6551 42.6206 95.8962 19.6368 78.5474 176.732 

 10.0 10.0717 40.2869 90.6456 19.3265 77.306 173.938 

 Classical beam 9.8696 39.4784 88.8264 19.2219 76.8877 172.997 

6. Conclusions 

This paper presented the free vibration of nanobeams with 

simply supported by using Euler-Bernoulli beam theory and 

the MCST. The nonlinear equation of motion and boundary 

condition are derived by using the Hamilton’s principle. In 

the present paper, method of multiple scales is implemented 

to acquire the approximate solutions of the motion 

eqautions. The influences of the material length scale 

parameter (ζ) and the Poison’s ratio (υ) on the natural 

frequencies are investigated. Also, the considerable amount 

of numerical data is listed in tabular form for different 

quantities of the parameters in order to be references for 

future studies. In brief, numerical result show that the non-

dimensional natural frequency would decrease as the 

dimensionless scale parameters magnifies. 
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